2× Vazyme LAmp Master Mix

Catalog # P311, P312

Version 5.1

Vazyme biotech co., ltd.

Introduction

2× Vazyme LAmp Master Mix is a blend of Taq DNA Polymerase and a DNA proofreading polymerase with 3' to 5' exonuclease activity. Its fidelity was 6-fold higher than conventional Taq DNA Polymerase. Used with the optimized buffer system, 2× Vazyme LAmp Master Mix is applicable to long PCR products, up to 21 kb. This Master Mix is also able to amplify long fragments accurately from templates of different sources or different length.

2x Vazyme LAmp Master Mix contains Vazyme LAmp DNA Polymerase, dNTP, and optimized buffer. The reaction can be started by adding only primers and template, which simplifies the operation, improves through-put, and enhances result reproducibility. The protective agents included guarantees the stability of the activity of this Master Mix. The PCR product, containing dA at 3'-end, can be cloned into T-vector, and is suitable for One Step Express cloning kit (C112/C113).

Package Information

Components	P311-01 1 ml	P311-02 5 ml	P311-03 15 ml	
2× Vazyme LAmp Master Mix	1 ml	5 ml	15 ml	
Components	P312-01 1 ml	P312-02 5 ml	P312-03 15 ml	
2× Vazyme LAmp Master Mix (Dye Plus)	1 ml	5 ml	15 ml	

Storage

Store at -20°C.

Protocol

Plasmid DNA

1. General reaction mixture for PCR:

ddH_2O	to 50 μl			
2× Vazyme LAmp Master Mix	25 μΙ			
Template DNA *	optional			
Primer 1 (10 µM)	2 μΙ			
Primer 2 (10 µM)	2 μΙ	2 μΙ		
* The optimal final concentration of template may varies	. The recommended amount of DNA template for a 50 μl reaction system is as f	follows:		
Human Genomic DNA	10 - 200 ng			
Bacterial Genomic DNA	1 - 100 ng			
λDNA	0.1 - 10 ng			

0.1 - 10 ng

2. Thermocycling conditions:

Amplification of a DNA fragment < 5 kb:

94°C	5 min (Pre-denaturat	tion)
94°C	30 sec	
55°C*	30 sec	30 - 35 cycles
72℃	30 sec / kb	J
72℃	7 min (Final extensio	on)

^{*}The optimal annealing temperature should be 1-2°C lower than the $T_{\scriptscriptstyle m}$ of the primers used.

Amplification of a DNA fragment > 5 kb:

94°C	1 - 3 min (Pre-denaturati	ion)
94℃	10 sec	30 - 35 cycles
68℃*	30 - 60 sec / kb	
68℃	7 min (Final extension)	

^{*} For amplification of a DNA fragment > 5 kb, it is recommended to use long primers which Tm between 68°C and 70°C. The temperature for both annealing and extension should be 68°C, which can significantly improve the amplification specificity. Extending extension time could increase the amplification yield.

Vazyme Biotech Co., Ltd

Order: global@vazyme.com

Support: global@vazyme.com

www.vazyme.com

For research use only, not for use in diagnostic procedures.

Primers Designing Notes

- 1. Choose C or G as the last base of the 3'-end of the primer;
- 2. Avoid continuous mismatching at the last 8 bases of the 3'-end of the primer;
- 3. Avoid hairpin structure at the 3'-end of the primer;
- 4. T_m of the primers should be within the range of 55°C 65°C;
- 5. Additional sequence should not be included when calculating Tm of the primers;
- 6. GC content of the primers should be within the range of 40% 60%;
- 7. $T_{\rm m}$ and GC content of forward and reverse primes should be as similar as possible.

